Inspiratory Muscle Training to Enhance Recovery from Mechanical Ventilation

Katie Wilson, SPT
Leslie Mead, SPT
Allie McKenna, SPT
Objectives

• Describe mechanical ventilation and the weaning process
• Describe the different techniques of IMT
• Review current research regarding IMT
• Explain the clinical relevance of IMT
What is Mechanical Ventilation?

• Machine that delivers oxygen & expels CO2 for individuals who cannot breathe on their own

• Time on ventilation should be 2.6 – 7.9 days but depends on
 – Overall strength of breathing muscles
 – Condition of lungs prior to mechanical ventilation
 – Patient characteristics
Complications of Ventilation

- Inspiratory muscle weakness
 - After 18-69 hours on ventilation proteolysis and atrophy occur
 - Failure to wean from ventilation
 - Increased airway resistance/reduced lung compliance
 - Ventilator-induced diaphragmatic dysfunction
- Airway trauma
- Infections
- Pneumothorax
- Critical illness myopathy/polyneuropathy
- Longer ICU stay – increase cost
- Mortality
Weaning

• Process of decreasing mechanical ventilation to allow the patient to breathe on their own
• 70% of ICU patients able to successfully wean off ventilators in first attempt
• Process takes 40-50% of total time on mechanical ventilation
Failure of Weaning

• Can lead to:
 – Increased risk of inspiratory muscle weakness
 – Critical illness myopathy/polyneuropathy
 – Infection
 – Airway trauma
What is IMT?

- Targets diaphragm and accessory inspiratory muscles
- Increases muscle strength and endurance
- Facilitates weaning
- Different techniques of IMT
IMT Techniques

• Resistive flow training
• Isocapnic/normocapnic hyperpnoea
• Inspiratory threshold pressure training *
• Adjustment of ventilator sensitivity
• Controlled diaphragmatic breathing*
• Incentive spirometry
<table>
<thead>
<tr>
<th>Study</th>
<th>Design</th>
<th>Description</th>
<th>Intervention</th>
<th>Outcome</th>
</tr>
</thead>
</table>
| Caruso et al (2005) | RCT | Intubated due to acute respiratory failure or decreased consciousness | Adjustment of ventilator trigger sensitivity to 20% of initial MIP
5 min x twice daily x 7 d/wk x until weaned
Duration increased by 5 min each session, max 30 min
Pressure increased by 10% of initial MIP, max 40% MIP
Stopped if adverse signs | No training |
| | | Receiving controlled ventilation or PS for ≥ 72 hr | | |
| | | Exp: n = 20
Completed n = 12 (8 male)
Age (yr) = 67 (SD 10)
APACHE II = 23 (SD 6)
Con: n = 20
Completed n = 13 (9 male)
Age (yr) = 66 (SD 17)
APACHE II = 24 (SD 7) | |
| Condessa et al (2013) | RCT | Intubated via endotracheal tube due to acute respiratory failure from trauma, medical or surgical causes | Threshold device at 40% MIP in supine 45 deg up
10 breaths x 5 sets x twice daily x 7 d/wk x until weaned
Pressure increased 10% of initial MIP daily, as tolerated
Stopped if adverse signs
Supplemental oxygen if needed | No training |
| | | Starting PS after ≥ 48 hr controlled ventilation | | |
| | | Exp: n = 45 (23 male)
Age (yr) = 64 (SD 17)
APACHE II = 23 (8)
Con: n = 47 (28 male)
Age (yr) = 65 (SD 15)
APACHE II = 23 (8) | |
Protocol

• Typically high intensity, short duration
• Threshold devices:
 – 3-5 sets of 6-10 breaths, 2 times per day
• Adjustment ventilator sensitivity:
 – Set to 20% of initial MIP
 – Completed for 5 minutes, 2 times per day, 5-7 days per week.
 – Duration increased 5 minutes each session
 – Pressure increased 10% each session
• STOPPED if adverse signs are observed
Current Research on IMT

• Outcomes of IMT programs
 – Increase QOL and inspiratory strength in individuals weaning off of mechanical ventilation
 – Decreased weaning time and increased maximal inspiratory pressure in individuals over the age of 16
 – Threshold pressure training or adjustments in ventilator sensitivity resulted in increased respiratory muscle strength when weaning patients off of a mechanical ventilator
Indicators for IMT

• Use of mechanical ventilator
• Reduced respiratory muscle strength
• Fatigue of diaphragm and accessory muscles
• Reduced respiratory muscle pump capacity
• Ventilator-induced diaphragmatic dysfunction
• Decreased respiratory muscle endurance
• To reduce weaning time
When to Begin IMT

• When patient is no longer sedated
• Patients condition has stabilized to where it is safe to begin the weaning process
Clinical Relevance

• Important for PT’s to understand proper IMT techniques
• When to implement IMT
• Affects the type and length of therapy
• Pt education
 – Compliance: decreases risk of pulmonary complications
Conclusion

- There are many complications from prolonged ventilation
- IMT is a technique that can help increase the strength and endurance of respiratory musculature
- Protocols and techniques of IMT should be based on patient characteristics
References