INTRODUCTION

- Left ventricular assist devices (LVAD’s) are implanted as a “bridging therapy” or a “destination therapy” for patients with end-stage heart failure.
- It is a mechanical device used to partially or completely reduce the workload of the left ventricle.
- After long-term use, it results in significantly meaningful changes in quality of life.
- Most patients who undergo implantations of LVAD’s are transferred to a rehabilitation unit and have significant comorbidities, are severely deconditioned, and have associated skeletal myopathy.

PURPOSE/ OBJECTIVES

- Present three case studies on the effectiveness of implantation of an LVAD for end stage heart failure.

PROTOCOL

Rehabilitation Protocol:
- 10-day rehabilitation protocol
- Consultation is initiated within the first postoperative day
- Physical therapy initiated when patient is stable
- Initial Evaluation: bed mobility, cognitive screening, and active assisted range of motion
- Day 2: fine and gross motor
- Day 3-10: patient progresses with functional activities
- FIM scored upon admission and upon discharge.

RESULTS

Case 1
- 51 yo male with LVAD implanted with CHF and ventricular arrhythmia
- admitted to rehab unit on post op day 21
- rehabilitation consisted of muscle strengthening, progressive ambulation, and ADL training
- FIM admission score was 76, improved to 108
- Ambulation improved from 150 feet with rolling walker with supervision to 500 feet independently
- D/C home after 7 days and died 2 months later due to spontaneous intracranial hemorrhage

Case 2
- 75 yo male with LVAD implanted for ischemic cardiomyopathy, complicated by gastrointestinal bleeding
- admitted to rehab on post op day 38
- admission FIM: 66, d/c FIM: 84
- D/C after 18 days, survived for 7 mo, died during a CHF exacerbation

Case 3
- 62 yo male with LVAD implanted for dilated cardiomyopathy
- admitted to rehab unit on post op day 28
- admission FIM: 67, D/C FIM: 98
- D/C home after 9 days, survived 21 days, died of spontaneous intracranial hemorrhage

DISCUSSION

- An LVAD consists of:
 - blood pump
 - percutaneous lead
 - system controller
 - external power source
- Medical complications may include:
 - thrombotic events, bleeding, arrhythmias, infections, depression, and device malfunction.
- Common findings:
 - Deconditioning from muscle disuse and atrophy
 - Therapy is similar to other patients who are chronically debilitated.
 - Patient survival is up to 1-2 years.
 - The most common causes of death are sepsis and device failure.
 - Two of the three patients studied here died of spontaneous intracranial hemorrhage, while the third died of CHF exacerbation.
 - The newer generation LVADs, which use continuous flow technology, may no longer require anticoagulation which may reduce this risk.
 - The added independence and functional gains that patients with an LVAD obtain during the rehabilitation stay may allow for a better quality of life.

CLINICAL SIGNIFICANCE

- Physical therapists can work with patients to improve quality of living in this patient population as they work to return home.
- Relevance to physical therapy is very clear:
 - Comorbidities and skeletal myopathy are common with this patient population
 - Prolonged assistance needed with ADL’s and functional tasks.

CONCLUSION

- Patients requiring LVADs can improve their overall QOL using this device as a destination therapy.
- The majority of patients with an LVAD can be D/C home with nursing and physical therapy services
- Patients with complex presentations may benefit from a short inpatient rehabilitation stay
- Each patient’s FIM score increased significantly during their rehabilitation stay

SUMMARY

- Each article agrees that the LVAD is effective for improving quality of life, therefore we believe that this device would be beneficial for patients with end stage heart failure.

Presented by Alex Norris and Sean Fizer