Feasibility of neuromuscular electrical stimulation in critically ill patients

J.S. PT, MSc a, G.H. MD, PhD b, F.B., MD, PhD c, G.M. MD, PhD d, D.L., PT, PhD a, R.G. PT, PhD

INTRODUCTION

- Outcome survival rate of critically ill patients has improved over the last decades.
- In some cases respiratory and multi-organ failure in ICU leads to immobility, muscle weakness, and atrophy.
- ICU acquired weakness (ICU-AW) is often associated with prolonged mechanical ventilation and increased mortality.
- Upon discharge ICU-AW may persist.
- Early exercise training in critically ill patients receiving mechanical ventilation is safe and beneficial for respiratory and limb muscles.

BACKGROUND

- Often critically ill patients may not be able to tolerate or participate in active exercise or muscle training.
- Neuromuscular stimulation (NMES) may be a potential intervention applied to help prevent further muscle atrophy and strength.
- Previous studies showed inconclusive results of NMES due to various factors: patient population, presentation, swelling, medication use, and myopathy.
- Previous studies have not analyzed the quality of contractions during sessions involving NMES in ICU patients.

PURPOSE

- Investigate the feasibility and safety of NMES of the quadriceps femoris muscle in acute critically ill patients by assessing the quality of muscle contraction.
- Identify factors that can interfere with the quality of contraction.
- Monitor NMES safety.

MATERIALS & METHODS

- 50 patients >18 years of age who stayed at least 3 days in the ICU were enrolled.
- Excluded patients with pre-existing NM disorders & conditions.
- 50% of the patients were responders.
- Patients with sepsis, edema, and those receiving vasopressors were more frequently classified as non-responders.
- Patients admitted to the medical ICU were less likely to be responders compared to patients admitted to the surgical intensive care unit.

RESULTS

- The patients’ average ICU length of stay was 15 days.
- 50% of the patients were responders.
- Patients with sepsis, edema, and those receiving vasopressors were more frequently classified as non-responders.
- Patients admitted to the medical ICU were less likely to be responders compared to patients admitted to the surgical intensive care unit.

DISCUSSION

- A statistically significant difference was found for the type of contraction between session 1 and session 5.
- No patient had a negative response in session 1 that changed to a positive response in session 5.
- 22% of the patients changed from a positive response in session 1 to a negative response in session 5.
- The possibility to elicit an adequate contraction could not be predicted by the NCS and EMG.
- An inverse relationship was found between the level of edema and type of contraction.

CLINICAL SIGNIFICANCE

- This study identified critically ill patients having sepsis, edema, or receiving vasopressors as less likely to respond to NMES with an adequate quadriceps femoris contraction.
- NMES is a safe intervention to be administered in the ICU.

CONCLUSION

- NMES is a modality used to preserve muscle mass and strength.
- Efficiency of PT can be increased by using NMES to control type II muscle fiber atrophy.
- The application of NMES in critically ill patients is attractive during the first week of ICU stay.
- PT can provide patient/caregiver education about the importance of physical activity in ICU to decrease muscle atrophy and weakness.

Table 4. Cardiovascular and respiratory responses during NMES for all patients (n = 50)

<table>
<thead>
<tr>
<th>Pre NMES session</th>
<th>After 20 min of NMES</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heart rate (beats per minute)</td>
<td>80 ± 13</td>
<td>80 ± 14</td>
</tr>
<tr>
<td>Systolic blood pressure (mm Hg)</td>
<td>130 ± 16</td>
<td>131 ± 15</td>
</tr>
<tr>
<td>Diastolic blood pressure (mm Hg)</td>
<td>65 ± 8</td>
<td>65 ± 10</td>
</tr>
<tr>
<td>Oxygen saturation (%)</td>
<td>97 ± 2</td>
<td>97 ± 3</td>
</tr>
<tr>
<td>Respiratory rate (beats per minute)</td>
<td>20 ± 3</td>
<td>20 ± 4</td>
</tr>
</tbody>
</table>

Table 4. Cardiovascular and respiratory responses during NMES for all patients (n = 50)

- Successful contractions obtained in 50% of patients.
- Edema, sepsis, and administration of vasopressors negatively influenced the quality of the muscle contraction induced by NMES.
- Neuromuscular blocking agents can be applied safely since none of the cardiorespiratory parameters changed significantly.
- Patients did not report negative consequences after the NMES sessions.

SUMMARY

- Results are inconclusive.
- Areas of future research:
 - Long-term effects of NMES on physical function and QOL in ICU survivors.
 - Feasibility and safety of NMES use in different subpopulations of critically ill patients.

Article # 2 and supporting evidence

- Article 1 & 2 both assessed BP, HR, HR & Q2 sats pre & post treatment of NMES intervention with no significant difference.
- Both articles supported the use of NMES to reduce muscle atrophy within the first week of stay for ICU patients: (5 days for article 1 and 7 days for article 2).

Article # 3 and supporting evidence

- Deconditioned patients obtain the best results when NMES is used in addition to standard care.
- Similar to article 1, NMES prevents skeletal muscle weakness.
- Assessment of the effectiveness of NMES for the preservation of muscle mass is inconclusive.
- Results were inconclusive after gathering data from eight eligible studies in the prevention of muscle wasting.
- No adverse effects or complications in relation to NMES safety or tolerability was reported in majority of studies in the review.

Presented by Chinwe Okoro SPT & Logan Simcox SPT